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Abstract. Numerical tests are used to validate a practical estimate for the optimal backward
errors of linear least squares problems. This solves a thirty-year-old problem suggested by Stewart
and Wilkinson.
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“A great deal of thought, both by myself and by J. H. Wilkinson, has
not solved this problem, and I therefore pass it on to you: find easily
computable statistics that are both necessary and sufficient for the
stability of a least squares solution.” — G. W. Stewart [24, pp. 6–7]

1. Introduction. Our aim is to examine the usefulness of a certain quantity as
a practical backward error estimator for the least squares (LS) problem:

min
x
‖Ax− b‖2 where b ∈ Rm and A ∈ Rm×n.

Throughout the paper, x denotes an arbitrary vector in Rn. If any such x solves
the LS problem for data A + δA, then the perturbation δA is called a backward error
for x. This name is borrowed from the context of Stewart and Wilkinson’s remarks,
backward rounding error analysis, which finds and bounds some δA when x is a
computed solution. When x is arbitrary, it may be more appropriate to call δA a
“data perturbation” or a “backward perturbation” rather than a “backward error.”
All three names have been used in the literature.

The size of the smallest backward error is µ(x) = minδA ‖δA‖F . A precise defini-
tion and more descriptive notation for this are

µ(x) =
{

the size of data perturbation, for matrices in least squares
problems, that is optimally small in the Frobenius norm,
as a function of the approximate solution x

}
= µ(LS)

F (x) .

This level of detail is needed here only twice, so we usually abbreviate it to “optimal
backward error” and write µ(x). The concept of optimal backward error originated
with Oettli and Prager [19] in the context of linear equations.

If µ(x) can be estimated or evaluated inexpensively, then the literature describes
three uses for it.

1. Accuracy criterion. When the data of a problem have been given with an error
that is greater than µ(x), then x must be regarded as solving the problem,
to the extent the problem is known. Conversely, if µ(x) is greater than the
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uncertainty in the data, then x must be rejected. These ideas originated
with John von Neumann and Herman Goldstine [18] and were rediscovered
by Oettli and Prager.

2. Run-time stability estimation. A calculation that produces x with small µ(x)
is called backwardly stable. Stewart and Wilkinson [24, pp. 6–7], Karlson
and Waldén [15, p. 862] and Malyshev and Sadkane [16, p. 740] emphasized
the need for “practical” and “accurate and fast” ways to determine µ(x) for
least squares problems.

3. Exploring the stability of new algorithms. Many fast algorithms have been
developed for LS problems with various kinds of structure. Gu [12, p. 365]
[13] explained that it is useful to examine the stability of such algorithms
without having to perform backward error analyses of them.

When x is a computed solution, Wilkinson would have described these uses for µ(x)
as “a posteriori” rounding error analyses.

The exact value of µ(x) was discovered by Waldén, Karlson and Sun [28] in 1995.
To evaluate it, they recommended a formula that Higham had derived from their
pre-publication manuscript [28, p. 275] [14, p. 393],

µ(x) = min
{
‖r‖
‖x‖

, σmin[A B]
}

, B =
‖r‖
‖x‖

(
I − rrt

‖r‖2

)
, (1.1)

where r = b − Ax is the residual for the approximate solution, σmin is the smallest
singular value of the m×(n+m) matrix in brackets, and ‖·‖ means the 2-norm unless
otherwise specified. There are similar formulas when both A and b are perturbable,
but they are not discussed here. It is interesting to note that a prominent part of
these formulas is the optimal backward error of the linear equations Ax = b, namely

η(x) ≡ ‖r‖
‖x‖

= µ(LE)
F (x) = µ(LE)

2 (x) . (1.2)

The singular value in (1.1) is expensive to calculate by dense matrix methods, so
other ways to obtain the backward error have been sought. Malyshev and Sadkane
[16] proposed an iterative process based on the Golub-Kahan process [8] (often called
Lanczos bidiagonalization).

Other authors including Waldén, Karlson and Sun have derived explicit approx-
imations for µ(x). One estimate in particular has been studied in various forms by
Karlson and Waldén [15], Gu [12], and Grcar [11]. It can be written as

µ̃(x) =
∥∥(
‖x‖2AtA + ‖r‖2I

)−1/2
Atr

∥∥ =
∥∥(

AtA + η2I
)−1/2

Atr
∥∥ /‖x‖ . (1.3)

For this quantity:
• Karlson and Waldén showed [15, p. 864, eqn. 2.5 with y = yopt] that, in the

notation of this paper,

2
2 +

√
2

µ̃(x) ≤ f(yopt) ,

where f(yopt) is a complicated expression that is a lower bound for the small-
est backward error in the spectral norm, µ(LS)

2 (x). It is also a lower bound
for µ(x) = µ(LS)

F (x) because ‖δA‖2 ≤ ‖δA‖F. Therefore Karlson and Waldén’s
inequality can be rearranged to

µ̃(x)
µ(x)

≤ 2 +
√

2
2

≈ 1.707 . (1.4)
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• Gu [12, p. 367, cor. 2.2] established the bounds

‖r∗‖
‖r‖

≤ µ̃(x)
µ(x)

≤
√

5 + 1
2

≈ 1.618 , (1.5)

where r∗ is the unique, true residual of the LS problem. He used these
inequalities to prove a theorem about the definition of numerical stability for
LS problems. Gu derived the bounds assuming that A has full column rank.
The lower bound in (1.5) should be slightly less than 1 because it is always
true that ‖r∗‖ ≤ ‖r‖, and because r ≈ r∗ when x is a good approximation to
a solution.

• Finally, Grcar [11, thm. 4.4], based on [10], proved that µ̃(x) asymptotically
equals µ(x) in the sense that

lim
x → x∗

µ̃(x)
µ(x)

= 1 , (1.6)

where x∗ is any solution of the LS problem. The hypotheses for this are that
A, r∗, and x∗ are not zero. This limit and both equations (1.1) and (1.3) do
not restrict the rank of A or the relative sizes of m and n.

All these bounds and limits suggest that (1.3) is a robust estimate for the optimal
backward error of least squares problems. However, this formula has not been exam-
ined numerically. It receives only brief mention in the papers of Karlson and Waldén,
and Gu, and neither they nor Grcar performed numerical experiments with it. The
aim of this paper is to determine whether µ̃(x) is an acceptable estimate for µ(x) in
practice, thereby answering Stewart and Wilkinson’s question.

2. When both A and b are perturbed. A practical estimate for the optimal
backward error when both A and b are perturbed is also of interest. In this case, the
optimal backward error is defined as

min
∆A,∆b

{‖∆A, θ∆b‖F : ‖(A + ∆A)y − (b + ∆b)‖2 = min},

where θ is a weighting parameter. (Taking the limit θ →∞ forces ∆b = 0, giving the
case where only A is perturbed.) From Waldén et al. [28] and Higham [14, p. 393] the
exact backward error is

µA,b(x) = min{
√

νη, σmin[A B]},

where

η =
‖r‖
‖x‖

, B =
√

νη

(
I − rrt

‖r‖2

)
, ν =

θ2‖x‖2

1 + θ2‖x‖2
.

Thus, µA,b(x) is the same as µ(x) in (1.1) with η changed to η̄ ≡
√

νη (as noted by
Su [25]). Hence we can estimate µA,b(x) using methods for estimating µ(x), replacing
η = ‖r‖/‖x‖ by η̄ =

√
ν‖r‖/‖x‖. In particular, from (1.3) we see that µA,b(x) may

be estimated by

µ̃A,b(x) =
∥∥(

AtA + η̄2I
)−1/2

Atr
∥∥ /‖x‖ . (2.1)

The asymptotic property (1.6) also follows because µ̃(x) and µ̃A,b(x) have the same
essential structure.

In the remainder of the paper, we consider methods for computing µ̃(x) when
only A is perturbed, but the same methods apply to computing µ̃A,b(x).
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3. The KW problem and projections. Karlson and Waldén [15, p. 864] draw
attention to the full-rank LS problem

K =

[
A
‖r‖
‖x‖I

]
, v =

[
r

0

]
, min

y
‖Ky − v‖, (3.1)

which proves central to the computation of µ̃(x). It should be mentioned that LS
problems with this structure are called “damped”, and have been studied in the
context of Tikhonov regularization of ill-posed LS problems [3, pp. 101–102]. We
need to study three such systems involving various A and r. To do so, we need some
standard results on QR factorization and projections. We state these in terms of a
full-rank LS problem miny ‖Ky − v‖ with general K and v.

Lemma 3.1. Suppose the matrix K has full column rank and QR factorization

K = Q

[
R

0

]
= Y R , Q =

[
Y Z

]
, (3.2)

where R is upper triangular and nonsingular, and Q is square and orthogonal, so that
Y tY = I, ZtZ = I, and Y Y t + ZZt = I. The associated projection operators may be
written as

P = K(KtK)−1Kt = Y Y t, I − P = ZZt. (3.3)

Lemma 3.2. For the quantities in Lemma 3.1, the LS problem miny ‖Ky − v‖
has a unique solution and residual vector defined by Ry = Y tb and t = v −Ky, and
the two projections of v satisfy

Pv = Ky = Y Y tv, ‖Ky‖ = ‖Y tv‖, (3.4)

(I − P )v = t = ZZtv, ‖t‖ = ‖Ztv‖. (3.5)

(We do not need (3.5), but it is included for completeness.)
We now find that µ̃(x) in (1.3) is the norm of a certain vector’s projection. Let

K and v be as in the KW problem (3.1). From (1.3) and the definition of P in (3.3)
we see that ‖x‖2 µ̃(x)2 = vtPv, and from (3.4) we have vtPv = ‖Y tv‖2. It follows
again from (3.4) that

µ̃(x) =
‖Pv‖
‖x‖

=
‖Y tv‖
‖x‖

=
‖Ky‖
‖x‖

, (3.6)

where Y and ‖Y tv‖ may be obtained from the reduced QR factorization K = Y R
in (3.2). (It is not essential to keep the Z part of Q.) Alternatively, ‖Ky‖ may be
obtained after the KW problem is solved by any method.

4. Evaluating the estimate. Several ways to solve minx ‖Ax − b‖2 produce
matrix factorizations that can be used to evaluate µ̃(x) in (1.3) or (3.6) efficiently.
We describe some of these methods here. If x is arbitrary, then the same procedures
may still be used to evaluate µ̃(x) at the extra cost of calculating the factorizations
just for this purpose.



OPTIMAL BACKWARD PERTURBATIONS FOR LEAST SQUARES 5

Table 4.1
Operation counts of solving LS problems by SVD methods with and without forming eµ(x). The

work to evaluate eµ(x) includes that of r. Only leading terms are shown.

task operations source

form U , Σ, V by Chan SVD 6mn2 + 20n3 [9, p. 239]

solve LS given U , Σ, V 2mn + 2n2

evaluate eµ(x) by (4.1) given
U , Σ, V

4mn + 10n

solve LS by Chan SVD 2mn2 + 11n3 [9, p. 248]

4.1. SVD methods. A formula essentially due to Gu [12] can evaluate µ̃(x)
when a singular value decomposition (SVD) is used to solve the LS problem. For
purposes of this derivation, such a decomposition without restrictions on m and n is
A = UΣV t where Σ is a square matrix and where U and V have orthonormal columns
but may not be square. With this notation it follows that

‖x‖ µ̃(x) =
∥∥(

AtA + η2I
)−1/2

Atr
∥∥

=
∥∥(

V Σ2V t + η2I
)−1/2

V Σ U tr
∥∥

=
∥∥[

V
(
Σ2 + η2I

)
V t

]−1/2
V Σ U tr

∥∥
=

∥∥V
(
Σ2 + η2I

)−1/2
V tV Σ U tr

∥∥
=

∥∥(
Σ2 + η2I

)−1/2
Σ U tr

∥∥ , (4.1)

where η = η(x) in (1.2). Note that the dimension of I may change from line 2 to 3:
since the matrix in the square root is applied only to the columns of V , it is possible
to pull V and V t outside the sum even when I 6= V V t. Equation (4.1) is roughly how
Gu [12, p. 367, cor. 2.2] stated the estimate in the full rank case.

Calculating µ̃(x) has negligible cost once U , Σ and V have been formed. However,
the most efficient SVD algorithms for LS problems accumulate U tb rather than form
U . This saving cannot be realized when U is needed to evaluate µ̃(x). As a result,
Table 4.1 shows the operations triple from roughly 2mn2 for x, to 6mn2 for both x
and µ̃(x). This is still much less than the cost of evaluating the exact µ(x) by (1.1)
because about 4m3+2m2n arithmetic operations are needed to find all singular values
of an m× (n + m) matrix [9, p. 239].

4.2. QR methods. If QR factors of A are available (e.g., from solving the
original LS problem), the required projection may be evaluated in two stages. Let the
factors be denoted by subscript A. Applying Y t

A to the top parts of K and v yields
an equivalent LS problem

K ′ =

[
RA

‖r‖
‖x‖I

]
, v′ =

[
Y t

Ar

0

]
, min

y
‖K ′y − v′‖ . (4.2)

If A has low column rank, we would still regard RA and YA as having n columns. A
second QR factorization gives

µ̃(x) =
‖Y t

K′ v′‖
‖x‖

. (4.3)



6 JOSEPH GRCAR, MICHAEL SAUNDERS, AND ZHENG SU

Table 4.2
Operation counts of solving LS problems by QR methods and then evaluating eµ(x) when m ≥ n.

The work to evaluate Y t
Ar includes that of r. Only leading terms are shown.

task operations source

solve LS by Householder QR, retaining YA 2mn2 [9, p. 248]

form Y t
Ar and v′ 4mn

apply Y t
K′ to v′ 8

3
n3 [15, p. 864]

finish evaluating eµ(x) by (4.3) 2n

Table 4.3
Summary of operation counts to solve LS problems, to evaluate the estimate eµ(x), and to

evaluate the exact µ(x). Only leading terms are considered.

task operations m = 1000, n = 100 source

solve LS by QR 2mn2 20,000,000 Table 4.2

solve LS by QR and
evaluate eµ(x) by (4.3)

2mn2 + 8
3
n3 22,666,667 Table 4.2

solve LS by Chan SVD 2mn2 + 11n3 31,000,000 Table 4.1

solve LS by Chan SVD and
evaluate eµ(x) by (4.3)

2mn2 + 41
3

n3 33,666,667 Tables 4.1, 4.2

solve LS by Chan SVD and
evaluate eµ(x) by (4.1)

6mn2 + 20n3 80,000,000 Table 4.1

evaluate µ(x) by (1.1) 4m3 + 2m2n 4,200,000,000 [9, p. 239]

This formula could use two reduced QR factorizations. Of course, YK′ needn’t be
stored because Y t

K′ v′ can be accumulated as K ′ is reduced to triangular form.
Table 4.2 shows that the optimal backward error can be estimated at little addi-

tional cost over that of solving the LS problem when m � n. Since K ′ is a 2n × n
matrix, its QR factorization needs only O(n3) operations compared to O(mn2) for the
factorization of A. Karlson and Waldén [15, p. 864] considered this same calculation
in the course of evaluating a different estimate for the optimal backward error. They
noted that sweeps of plane rotations most economically eliminate the lower block of
K ′ while retaining the triangular structure of RA.

4.3. Operation counts for dense matrix methods. Table 4.3 summarizes
the operation counts of solving the LS problem and estimating its optimal backward
errors by the QR and SVD solution methods for dense matrices. It is clear that
evaluating the estimate is negligible compared to evaluating the true optimal backward
error. Obtaining the estimate is even negligible compared to solving the LS problem
by QR methods.

The table shows that the QR approach also gives the most effective way to eval-
uate µ̃(x) when the LS problem is solved by SVD methods. Chan’s algorithm for
calculating the SVD begins by performing a QR factorization. Saving this intermedi-
ate factorization allows (4.3) to evaluate the estimate with the same, small marginal
cost as in the purely QR case of Table 4.3.

4.4. Sparse QR methods. Equation (4.3) uses both factors of A’s QR decom-
position: YA to transform r, and RA occurs in K ′. Although progress has been made
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towards computing both QR factors of a sparse matrix, notably by Adlers [1], it is
considerably easier to work with just the triangular factor, as described by Matstoms
[17]. Therefore methods to evaluate µ̃(x) are needed that do not presume YA.

The simplest approach may be to evaluate (3.6) directly by transforming K to
upper triangular form. Notice that AtA and KtK have identical sparsity patterns.
Thus the same elimination analysis would serve to determine the sparse storage space
for both RA and R. Also, Y tv can be obtained from QR factors of

[
K v

]
. The

following Matlab code is often effective for computing µ̃(x) for a sparse matrix A
and a dense vector b:

[m,n] = size(A); r = b - A*x;
normx = norm(x); eta = norm(r)/normx;
p = colamd(A);
K = [A(:,p); eta*speye(n)];
v = [ r ; zeros(n,1)];
[c,R] = qr(K,v,0); muKW = norm(c)/normx;

Note that colamd returns a good permutation p without forming A’*A, and qr(K,v,0)
computes the required projection c = Y tv without storing any Q.

4.5. Iterative methods. If A is too large to permit the use of direct methods,
we may consider iterative solution of the original problem min ‖Ax− b‖ as well as the
KW problem (3.1):

min
y
‖Ky − v‖ ≡ min

y

∥∥∥∥[
A
ηI

]
y −

[
r
0

]∥∥∥∥ , η ≡ η(x) =
‖r‖
‖x‖

. (4.4)

In particular, LSQR [20, 21, 23] takes advantage of the damped least squares structure
in (4.4). Using results from Saunders [22], we show here that the required projection
norm is available within LSQR at negligible additional cost.

For problem (4.4), LSQR uses the Golub-Kahan bidiagonalization of A to form
matrices Uk and Vk with theoretically orthonormal columns and a lower bidiagonal
matrix Bk at each step k. With β1 = ‖r‖, a damped LS subproblem is defined and
transformed by a QR factorization:

min
wk

∥∥∥∥[
Bk

ηI

]
wk −

[
β1e1

0

]∥∥∥∥ , Qk

[
Bk β1e1

ηI 0

]
=

 Rk zk

ζ̄k+1

qk

 . (4.5)

The kth estimate of y is defined to be yk = Vkwk = (VkR−1
k )zk. From [22, pp. 99–100],

the kth estimate of the required projection is given by

Ky ≈ Kyk ≡
[

A
ηI

]
yk =

[
Uk+1

Vk

]
Qt

k

[
zk

0

]
. (4.6)

Orthogonality (and exact arithmetic) gives ‖Kyk‖ = ‖zk‖. Thus if LSQR terminates
at iteration k, ‖zk‖ may be taken as the final estimate of ‖Ky‖ for use in (3.6), giving
µ̃(x) ≈ ‖zk‖/‖x‖. Since zk differs from zk−1 only in its last element, only k operations
are needed to accumulate ‖zk‖2.

LSQR already forms monotonic estimates of ‖y‖ and ‖v − Ky‖ for use in its
stopping rules, and the estimates are returned as output parameters. We see that
the estimate ‖zk‖ ≈ ‖Ky‖ is another useful output. Experience shows that the
estimates of such norms retain excellent accuracy even though LSQR does not use
reorthogonalization.
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Table 5.1
Matrices used in the numerical tests.

matrix rows m columns n κ2(A)

(a) illc1033 1033 320 1.9e+4
(b) well1033 1033 320 1.7e+2
(c) prolate 100 ≤ m ≤ 1000 n < m up to 9.2e+10

5. Numerical tests with direct methods. This section presents numerical
tests of the optimal backward error estimate. For this purpose it is most desirable
to make many tests with problems that occur in practice. Since large collections of
test problems are not available for least squares, it is necessary to compromise by
using many randomly generated vectors, b, with a few matrices, A, that are related
to real-world problems.

5.1. Description of the test problems. The first two matrices in Table 5.1,
well1033 and illc1033, originated in the least-squares analysis of gravity-meter
observations. They are available from the Harwell-Boeing sparse matrix collection
[7] and the Matrix Market [4]. The prolate matrices [27] are very ill-conditioned
Toeplitz matrices of a kind that occur in signal processing. As generated here their
entries are parameterized by a number a:

Ai,j =

8><>:
2a if i = j,

sin(2aπ|i− j|)
π|i− j| if i 6= j.

Since these matrices may be given any dimensions, a random collection is uniformly
generated with 100 ≤ m ≤ 1000, 1 ≤ n < m, and − 1

4 ≤ a ≤ 1
4 .

Without loss of generality the vectors b in the LS problems may be restricted
to norm 1. Sampling them uniformly from the unit sphere poses a subtle problem
because, if A has more rows than columns, most vectors on the unit sphere are nearly
orthogonal to range(A). (To see this in 3-space, suppose that range(A) is the earth’s
axis. The area below 45◦ latitude is much larger than the surface area in higher
latitudes. This effect is more pronounced for higher dimensional spheres.) Since least
squares problems are only interesting when b has some approximation in terms of A’s
columns, b is sampled so that ∠(b, range(A)) is uniformly distributed, as follows:

b = c1
PAu

‖PAu‖
+ c2

(I − PA)u
‖(I − PA)u‖

.

In this formula, (c1, c2) = (cos(θ), sin(θ)) is uniformly chosen on the unit sphere,
PA : Rm → range(A) is the orthogonal projection, and u is uniformly chosen on the
unit sphere in Rm using the method of Calafiore, Dabbene, and Tempo [5].

5.2. Description of the calculations. For the factorization methods, 1000
sample problems are considered for each type of matrix in Table 5.1. For each sample
problem, the solution x and the backward error estimate µ̃(x) are computed using
IEEE single precision arithmetic. The estimates are compared with the optimal back-
ward error µ(x) from Higham’s equation (1.1) evaluated in double precision. Matrix
decompositions are calculated and manipulated using the LINPACK [6] subroutines
sqrdc, sqrsl, and ssvdc, and for the higher precision calculations dqrdc, dqrsl, and
dsvdc.
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Fig. 5.1. Histograms for the ratios of single precision estimates to true optimal backward error
for all the test cases solved by dense matrix factorizations. The SVD and QR solution methods use
the estimates in (4.1) and (4.3), respectively.

Single precision is used for the tests so it is possible to assess the rounding error in
the estimates by comparing them to the values formed with greater precision. It should
be understood that the errors in the solutions and in the estimates are exaggerated as
a result; they are larger than would be obtained by calculating solutions to the same
problems with double precision arithmetic.

5.3. Test results for SVD and QR methods. Figure 5.1 displays the ratios

µ̃(x)|single / µ(x) (5.1)

for all the test cases. The notation |single is used to emphasize that the estimate
µ̃(x) itself must be obtained by machine arithmetic, in this case by single precision
arithmetic. Figure 5.1 shows that in most cases µ̃(x)|single is indistinguishable from
the optimal backward error. The remainder of this section is a detailed examination
of the test results for each problem set.

Tests with (a) illc1033. Figure 5.2 displays more information about the tests for
the illc1033 matrix. Since this matrix has full rank, the LS problem has a unique
solution x∗, so it is meaningful to consider the relative solution error,

‖x− x∗‖ / ‖x∗‖ . (5.2)

This is displayed in Figure 5.2(a). It is surprising that the SVD solution method
produces larger errors than the QR method. Nevertheless, Figure 5.2(b) shows that in
all cases the relative backward error,

µ(x) / ‖A‖F , (5.3)

is smaller than the single precision rounding unit. Another surprise is that the back-
ward errors of LS problems are orders of magnitude smaller than the solution errors.
Thus, by von Neumann’s criterion, all the x’s computed for the sample problems must
be accepted as accurate solutions.
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Fig. 5.2. For the illc1033 test cases, these figures show the relative size of: (a) solution
error, (b) optimal backward error, (c, d, e) errors in the estimated optimal backward error. These
quantities are defined in (5.2), (5.3), (5.4), (5.6), and (5.7), respectively.

The scatter away from 100 in Figure 5.1’s ratios is explained by the final three
parts of Figure 5.2. The overall discrepancy in µ̃(x)|single as compared to µ(x) is
shown in Figure 5.2(c): ∣∣ µ̃(x)|single − µ(x)

∣∣ / µ(x) . (5.4)

This discrepancy is the sum of rounding error and approximation error:

µ̃(x)|single − µ(x) =
[

µ̃(x)|single − µ̃(x)
]︸ ︷︷ ︸

rounding error

+
[

µ̃(x)− µ(x)
]︸ ︷︷ ︸

approximation error

. (5.5)

Figure 5.2(d) shows the relative rounding error,∣∣ µ̃(x)|single − µ̃(x)
∣∣ / µ̃(x) , (5.6)

while Figure 5.2(e) shows the relative approximation error,∣∣ µ̃(x)− µ(x)
∣∣ / µ(x) . (5.7)

Yet another surprise from Figure 5.2(e) is that the approximation error of the esti-
mate is vanishingly small. Evidently (1.6)’s limit approaches 1 so quickly that the
approximation error is by far the smaller quantity in (5.5). Thus the scatter in Figure
5.1’s ratios is due primarily to rounding errors in evaluating the estimate.
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Fig. 5.3. For the well1033 test cases, these figures show the relative size of: (a) solution
error, (b) optimal backward error, (c, d, e) errors in the estimated optimal backward error. These
quantities are defined in (5.2), (5.3), (5.4), (5.6), and (5.7), respectively.

As a result of this scatter, it should be pointed out, the computed estimate often
does not satisfy Gu’s lower bound in (1.5),

1 ≈ ‖r∗‖
‖r‖

6≤
µ̃(x)

∣∣
single

µ(x)
.

The bound fails even when x and µ̃(x) are evaluated in double precision. For higher
precisions the scatter does decrease, but the lower bound becomes more stringent
because r becomes a better approximation to r∗.

Tests with (b) well1033. Figure 5.3 shows the details of the tests for the better
conditioned matrix well1033. Some differences between it and Figure 5.2 can be
partially explained by the conditioning of LS problems. The relative, spectral-norm
condition number of the full-rank LS problem is [3, p. 31, eqn. 1.4.28] [11, thm. 5.1](

‖r∗‖
σmin(A) ‖x∗‖

+ 1
)

κ2(A) . (5.8)

As A becomes better conditioned so does the LS problem, and the calculated solutions
should become more accurate. This is the trend in the leftward shift of the histograms
from Figure 5.2(a) to 5.3(a).

However, the rightward shift from Figure 5.2(d) to 5.3(d) suggests that as x
becomes more accurate, µ̃(x) may become more difficult to evaluate accurately. The
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Fig. 5.4. True and computed (that is, double and single precision) singular values for three
of the prolate test matrices. Both calculations begin from the same data because the matrices are
generated in single precision and then are promoted to double precision. The smallest single precision
values are wildly inaccurate even above the cutoff (dashed line) for numerical rank.

reason is that r, too, is more accurate, so v is more nearly orthogonal to range(K)
in (3.6). With ‖Pv‖ smaller, the rounding error in r|single accounts for more of the
projection’s value. Just the error of rounding r to single precision places a floor on
the error in any machine representation, so this error never can be eliminated entirely.

Not too much should be inferred from the reversed position of the QR and SVD
data in Figures 5.2(e) and 5.3(e). These figures are subject to rounding error because
they actually compare double precision evaluations of µ̃(x) and µ(x). The small error
in these quantities cannot be checked without comparing them to quad precision
calculations, which are very slow.

Tests with (c) prolate matrices. Table 5.1 indicates that the prolate matrices
are rank-deficient in single precision. In this case, the default approach taken by
LAPACK’s driver routines [2, pp. 12, 141] is to truncate the SVD. This replaces A
by U1Σ1V

t
1 , where Σ1 consists of all singular values σi ≥ uσmax(A) and where u is

the roundoff unit. In statistics, the effect is to reduce the variance in the estimator,
x, at the cost of introducing some bias [3, p. 100]. In numerical terms, the truncated
problem has the advantages of being well posed and avoiding large magnitudes in
the solution that might be caused by small divisors. The numerical justification for
changing the problem is that the truncated SVD perturbs A by no more than what is
needed to represent A in finite precision. Discussions of this approach in the literature
usually are not accompanied by examples such as Figure 5.4, which displays the true
and computed singular values for three test matrices. From the figure it is not clear
that the truncated approach is meaningful because the smallest singular values, which
determine the truncation, appear to be computed with no accuracy whatsoever.

Figure 5.5 displays details of the prolate test cases for solutions computed by
the truncated SVD. The solution’s relative error in Figure 5.5(a) is with respect to
the unique solution of the LS problem, which does have full rank in higher precision.



OPTIMAL BACKWARD PERTURBATIONS FOR LEAST SQUARES 13

Fig. 5.5. For the prolate test cases, these figures show the relative size of: (a) solution
error, (b) optimal backward error, (c, d, e) errors in the estimated optimal backward error. These
quantities are defined in (5.2), (5.3), (5.4), (5.6), and (5.7), respectively.

Although the single precision solutions are quite different from x∗, Figure 5.5(b)
indicates that the backward errors are acceptably small. The small backward errors
do justify using the truncated SVD to solve these problems. This suggests that
the ability to estimate the backward error might be useful in designing algorithms
for rank-deficient problems. For example, in the absence of a problem-dependent
criterion, small singular values might be included in the truncated SVD provided
they do not increase the backward error.

The rest of Figure 5.5 is consistent with the other tests. The rounding error in
the estimate has about the same relative magnitude, O(10−2), in all Figures 5.2(d),
5.3(d), and 5.5(d). The approximation error shown in Figure 5.5(e) is larger than
in Figures 5.2(e) and 5.3(e) because of the much less accurate solutions, but overall,
µ̃(x)|single remains an acceptable backward error estimate. Indeed, the estimate is
remarkably good given the poor quality of the computed solutions.

6. Test results for iterative methods. In the preceding numerical results,
the vector x has been an accurate estimate of the LS solution. Applying LSQR to a
problem minx ‖Ax− b‖ generates a sequence of approximate solutions {xk}. For the
well and illc test problems we used the Matlab code in section 4.4 to compute
µ̃(xk) for each xk.

To our surprise, these values proved to be monotonically decreasing, as illustrated
by the lower curve in Figures 6.1 and 6.2. (To make it scale-independent, this curve
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is really µ̃(xk)/‖A‖F.)
For each xk, let rk = b−Axk and η(xk) = ‖rk‖/‖xk‖. Also, let Kk, vk and yk be

the quantities in (3.1) when x = xk. The LSQR iterates have the property that ‖rk‖
and ‖xk‖ are decreasing and increasing respectively, so that η(xk) is monotonically
decreasing. Also, we see from (3.6) that

µ̃(xk) =
‖Y t

k vk‖
‖xk‖

<
‖vk‖
‖xk‖

=
‖rk‖
‖xk‖

= η(xk),

so that η(xk) forms a monotonically decreasing bound on µ̃(x). However, we can only
note empirically that µ̃(xk) itself appears to decrease monotonically also.

The stopping criterion for LSQR is of interest. It is based on a non-optimal
backward error ‖Ek‖F derived by Stewart [24], where

Ek = − 1
‖rk‖2

rkrt
kA.

(If Ã = A + Ek and r̃ = b− Ãxk, then (xk, r̃k) are the exact solution and residual for
minx ‖Ãx−b‖.) Note that ‖Ek‖F = ‖Ek‖2 = ‖Atrk‖/‖rk‖. On incompatible systems,
LSQR terminates when its estimate of ‖Ek‖2/‖A‖F is sufficiently small; i.e., when

test2k ≡
‖Atrk‖
‖A‖k‖rk‖

≤ atol, (6.1)

where ‖A‖k is a monotonically increasing estimate of ‖A‖F and atol is a user-specified
tolerance.

Figures 6.1 and 6.2 show ‖rk‖ and three relative backward error quantities for
problems well1033 and illc1033 when LSQR is applied to minx ‖Ax − b‖ with
atol = 10−12. From top to bottom, the curves plot the following (log10):

• ‖rk‖ (monotonically decreasing).
• test2k, LSQR’s relative backward error estimate (6.1).
• η(xk)/‖A‖F, the optimal relative backward error for Ax = b (monotonic).
• µ̃(xk)/‖A‖F, the KW relative backward error estimate for minx ‖Ax − b‖,

where µ̃(xk) = ‖Pvk‖/‖xk‖ in (3.6) is evaluated as in section 4.4. (It is
apparently monotonic.)

The last curve is extremely close to the optimal relative backward error for LS prob-
lems. We see that LSQR’s test2k is two or three orders of magnitude larger for
most xk, and it is far from monotonic. Nevertheless, its trend is downward in broad
synchrony with µ̃(xk)/‖A‖F. We take this as an experimental approval of Stewart’s
backward error Ek and confirmation of the reliability of LSQR’s cheaply computed
stopping rule.

6.1. Iterative computation of µ̃(x). Here we use an iterative solver twice:
first on the original LS problem to obtain an approximate solution x, and then on the
associated KW problem to estimate the backward error for x.

1. Apply LSQR to minx ‖Ax − b‖ with iteration limit kmax . This generates a
sequence {xk}, k = 1 : kmax . Define x = xkmax . We want to estimate the
backward error for that final point x.

2. Define r = b−Ax and atol = 0.01‖Atr‖/(‖A‖F‖x‖).
3. Apply LSQR to the KW problem miny ‖Ky − v‖ (4.4) with convergence

tolerance atol. As described in section 4.5, this generates a sequence of
estimates µ̃(x) ≈ ‖z`‖/‖x‖ using ‖z`‖ ≈ ‖Ky‖ in (4.5)–(4.6).
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Fig. 6.1. Backward error estimates for each LSQR iterate xk during the solution of well1033
with atol = 10−12. The middle curve is Stewart’s estimate as used in LSQR; see (6.1). The bottom
curve is eµ(xk)/‖A‖F , where eµ(xk) is the KW bound on the optimal backward error computed as in
section 4.4 (unexpectedly monotonic).

Fig. 6.2. Backward error estimates for each LSQR iterate xk during the solution of illc1033
with atol = 10−12.

To avoid ambiguity we use k and ` for LSQR’s iterates on the two problems. Also,
the following figures plot relative backward errors µ̃(x)/‖A‖F, even though the ac-
companying discussion doesn’t mention ‖A‖F.

For problem well1033 with kmax = 50, Figure 6.3 shows µ̃(xk) for k = 1 : 50
(the same as the beginning of Figure 6.1). The right-hand curve then shows about
130 estimates ‖z`‖/‖x‖ converging to µ̃(x50) with about 2 digits of accuracy (because
of the choice of atol).

Similarly with kmax = 160, Figure 6.4 shows µ̃(xk) for k = 1 : 160 (the same as
the beginning of Figure 6.1). The final point x160 is close to the LS solution, and the
subsequent KW problem converges more quickly. About 20 LSQR iterations give a
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Fig. 6.3. Problem well1033: Iterative solution of KW problem after LSQR is terminated at x50.

Fig. 6.4. Problem well1033: Iterative solution of KW problem after LSQR is terminated at x160.

2-digit estimate of µ̃(x160).
For problem illc1033, similar effects were observed. In Figure 6.5 about 2300

iterations on the KW problem give a 2-digit estimate of µ̃(x2000), but in Figure 6.6
only 280 iterations are needed to estimate µ̃(x3500).

6.2. Comparison with Malyshev and Sadkane’s iterative method. Maly-
shev and Sadkane [16] show how to use the bidiagonalization of A with starting vector
r to estimate σmin[A B] in (1.1). This is the same bidiagonalization that LSQR uses
on the KW problem (3.1) to estimate µ̃(x). The additional work per iteration is
nominal in both cases. A numerical comparison is therefore of interest. We use the
results in Tables 5.2 and 5.3 of [16] corresponding to LSQR’s iterates x50 and x160 on
problems well1033 and illc1033. Also, Matlab gives us accurate values for µ̃(xk)
and σmin[A B] via sparse qr (section 4.4) and dense svd respectively.

In Tables 6.1–6.3, the true backward error is µ(x) = σmin[A B], the last line in
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Fig. 6.5. Problem illc1033: Iterative solution of KW problem after LSQR is terminated at x2000.

Fig. 6.6. Problem illc1033: Iterative solution of KW problem after LSQR is terminated at x3500.

each table.
In Tables 6.1–6.2, σ` denotes Malyshev and Sadkane’s σmin(B̄`) [16, (3.7)]. Note

that the iterates σ` provide decreasing upper bounds on σmin[A B], while the LSQR
iterates ‖z`‖/‖x‖ are increasing lower bounds on µ̃(x), but they do not bound σmin.

We see that all of the Malyshev and Sadkane estimates σ` bound σmin to within
a factor of 2, but they have no significant digits in agreement with σmin. In contrast,
η(xk) agrees with σmin to 3 digits in three of the cases, and indeed it provides a tighter
bound whenever it satisfies η < σ`. The estimates σ` are therefore more valuable when
η > σmin (i.e., when xk is close to a solution x∗).

However, we see that LSQR computes µ̃(xk) with 3 or 4 correct digits in all cases,
and requires fewer iterations as xk approaches x∗. The bottom-right values in Tables
6.1 and 6.3 show Grcar’s limit (1.6) taking effect. LSQR can compute these values to
high precision with reasonable efficiency.
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Table 6.1
Comparison of σ` and ‖z`‖/‖xk‖ for problem well1033.

k = 50

‖rk‖ 6.35e+1

‖Atrk‖ 5.04e+0

η(xk) 7.036807e−3

atol 4.44e−5

` σ` ‖z`‖/‖xk‖
10 2.35e−2 2.11e−3

50 1.51e−2 5.43e−3

100 1.22e−2 6.32e−3

127 6.379461e−3eµ(xk) 6.379462e−3

σmin[A B] 7.036158e−3

k = 160

‖rk‖ 7.52e−1

‖Atrk‖ 4.49e−4

η(xk) 7.3175e−5

atol 3.34e−7

` σ` ‖z`‖/‖xk‖
10 3.79e−5 8.9316e−8

19 8.9381e−8

50 2.95e−7

100 1.21e−7eµ(xk) 8.9386422278e−8

σmin[A B] 8.9386422275e−8

Table 6.2
Comparison of σ` and ‖z`‖/‖xk‖ for problem illc1033.

k = 50

‖rk‖ 3.67e+1

‖Atrk‖ 3.08e+1

η(xk) 4.6603e−3

atol 4.69e−5

` σ` ‖z`‖/‖xk‖
10 3.04e−2 1.62e−3

50 1.84e−2 3.71e−3

100 1.02e−2 4.11e−3

200 4.25e−3

300 4.28e−3

310 4.2825e−3eµ(xk) 4.2831e−3

σmin[A B] 4.6576e−3

k = 160

‖rk‖ 1.32e+1

‖Atrk‖ 3.78e−1

η(xk) 1.6196e−3

atol 1.60e−5

` σ` ‖z`‖/‖xk‖
10 1.10e−2 2.09e−4

50 4.63e−3 4.92e−4

100 3.40e−3 8.45e−4

200 1.23e−3

300 1.34e−3

400 1.38e−3

500 1.3841e−3

542 1.3843e−3eµ(xk) 1.3847e−3

σmin[A B] 1.6144e−3

Table 6.3
‖z`‖/‖xk‖ for problem illc1033.

k = 2000

‖rk‖ 7.89e−1

‖Atrk‖ 2.45e−3

η(xk) 7.82e−5

atol 1.73e−6

` ‖z`‖/‖xk‖
500 1.22e−5

1000 1.81e−5

1500 1.97e−5

2000 2.02e−5

2330 2.08e−5eµ(xk) 2.10e−5

σmin[A B] 2.12e−5

k = 3500

‖rk‖ 7.52e−1

‖Atrk‖ 5.54e−8

η(xk) 7.30e−5

atol 4.11e−11

` ‖z`‖/‖xk‖
10 4.41e−11

50 1.11e−10

100 1.54e−10

200 2.28e−10

280 2.32006e−10eµ(xk) 2.3209779030e−10

σmin[A B] 2.3209779099e−10
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The primary difficulty with our iterative computation of µ̃(x) is that when x is
not close to x∗, rather many iterations may be required, and there is no warning that
µ̃ may be an underestimate of µ.

Ironically, solving the KW problem for x = xk is akin to restarting LSQR on a
slightly modified problem. We have observed that if ` iterations are needed on the
KW problem to estimate µ̃(xk)/‖A‖F, continuing the original LS problem a further `
iterations would have given a point xk+` for which the Stewart-type backward error
test2k+` is generally at least as small. (Compare Figures 6.2 and 6.6.) Thus, the
decision to estimate optimal backward errors by iterative means must depend on the
real need for optimality.

7. Conclusions. Several approaches have been suggested and tested to evaluate
an estimate for the optimal size (that is, the minimal Frobenius norm) of backward
errors for LS problems. Specifically, to estimate the true backward error µ(x) in (1.1)
(for an arbitrary vector x), we have studied the estimate µ̃(x) in (1.3). The numerical
tests support various conclusions as follows.

Regarding LS problems themselves:
1. The QR solution method results in noticeably smaller solution errors than

the SVD method.
2. The optimal backward errors for LS problems are much smaller—often orders

of magnitude smaller—than the solution errors.

Regarding the estimates:
3. The computed estimate of the optimal backward error is very near the true

optimal backward error in all but a small percent of the tests.
(a) Grcar’s limit (1.6) for the ratio of the estimate to the optimal backward

error appears to approach 1 very quickly.
(b) The greater part of the fluctuation in the estimate is caused by rounding

error in its evaluation.
4. Gu’s lower bound (1.5) for the ratio of the estimate to the optimal back-

ward error often fails in practice because of rounding error in evaluating the
estimate.

5. As the computed solution of the LS problem becomes more accurate, the
estimate may become more difficult to evaluate accurately because of the
unavoidable rounding error in forming the residual.

6. For QR methods, evaluating the estimate is insignificant compared to the
cost of solving a dense LS problem.

7. When iterative methods become necessary, applying LSQR to the KW prob-
lem is a practical alternative to the bidiagonalization approach of Malyshev
and Sadkane [16], particularly when x is close to x∗. No special coding is
required (except a few new lines in LSQR to compute ‖zk‖ ≈ Ky as in sec-
tion 4.5), and LSQR’s normal stopping rules ensure at least some good digits
in the computed µ̃(x).

8. The smooth lower curves in Figures 6.1 and 6.2 suggest that when LSQR is
applied to an LS problem, the optimal backward errors for the sequence of
approximate solutions {xk} are (unexpectedly) monotonically decreasing.

9. The Stewart backward error used in LSQR’s stopping rule (6.1) can be some
orders of magnitude larger than the optimal backward error, but it appears
to track the optimal error well.
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